CHAPTER III Neural Networks as Associative Memory
نویسنده
چکیده
Associative memories can be implemented either by using feedforward or recurrent neural networks. Such associative neural networks are used to associate one set of vectors with another set of vectors, say input and output patterns. The aim of an associative memory is, to produce the associated output pattern whenever one of the input pattern is applied to the neural network. The input pattern may be applied to the network either as input or as initial state, and the output pattern is observed at the outputs of some neurons constituting the network. According to the way that the network handles errors at the input pattern, they are classified as interpolative and accretive memory. In the interpolative memory it is allowed to have some deviation from the desired output pattern when added some noise to the related input pattern. However, in accretive memory, it is desired the output to be exactly the same as the associated output pattern, even if the input pattern is noisy. Another classification of associative memory is such that while the memory in which the associated input and output patterns differ are called heteroassociative memory, it is called autoassociative memory if they are the same.
منابع مشابه
A Study on Associative Neural Memories
Memory plays a major role in Artificial Neural Networks. Without memory, Neural Network can not be learned itself. One of the primary concepts of memory in neural networks is Associative neural memories. A survey has been made on associative neural memories such as Simple associative memories (SAM), Dynamic associative memories (DAM), Bidirectional Associative memories (BAM), Hopfield memories,...
متن کاملNeural Network Applications F1.4 Associative memory
This section considers how neural networks can be used as associative memory devices. It first describes what an associative memory is, and then moves on to describe associative memories based on feedforward neural networks and associative memories based on recurrent networks. The section also describes associative memory systems based on cognitive models. It also highlights the ability of neur...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملApplied Artificial Neural Networks: from Associative Memories to Biomedical Applications
Due to remarkable capabilities of artificial neural networks (ANNs) such as generalization and nonlinear system modeling, ANNs have been extensively studied and applied in a wide variety of applications (Amiri et al., 2007; Davande et al., 2008). The rapid development of ANN technology in recent years has led to an entirely new approach for the solution of many data processing-based problems, u...
متن کاملQuantum neural networks
This chapter outlines the research, development and perspectives of quantum neural networks – a burgeoning new field which integrates classical neurocomputing with quantum computation [1]. It is argued that the study of quantum neural networks may give us both new undestanding of brain function as well as unprecedented possibilities in creating new systems for information processing, including ...
متن کامل